Synaptic Strength Regulated by Palmitate Cycling on PSD-95
نویسندگان
چکیده
Dynamic regulation of AMPA-type glutamate receptors represents a primary mechanism for controlling synaptic strength, though mechanisms for this process are poorly understood. The palmitoylated postsynaptic density protein, PSD-95, regulates synaptic plasticity and associates with the AMPA receptor trafficking protein, stargazin. Here, we identify palmitate cycling on PSD-95 at the synapse and find that palmitate turnover on PSD-95 is regulated by glutamate receptor activity. Acutely blocking palmitoylation disperses synaptic clusters of PSD-95 and causes a selective loss of synaptic AMPA receptors. We also find that rapid glutamate-mediated AMPA receptor internalization requires depalmitoylation of PSD-95. In a nonneuronal model system, clustering of PSD-95, stargazin, and AMPA receptors is also regulated by ongoing palmitoylation of PSD-95 at the plasma membrane. These studies suggest that palmitate cycling on PSD-95 can regulate synaptic strength and regulates aspects of activity-dependent plasticity.
منابع مشابه
Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95
Protein palmitoylation is the most common posttranslational lipid modification; its reversibility mediates protein shuttling between intracellular compartments. A large family of DHHC (Asp-His-His-Cys) proteins has emerged as protein palmitoyl acyltransferases (PATs). However, mechanisms that regulate these PATs in a physiological context remain unknown. In this study, we efficiently monitored ...
متن کاملIdentification of PSD-95 Palmitoylating Enzymes
UNLABELLED Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However, molecular mechanisms for palmitate cycling on PSD-95 remain incompletely understood, as PSD-95 depalmitoylati...
متن کاملPSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down.
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold...
متن کاملSynaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95
The scaffold protein PSD-95 promotes the maturation and strengthening of excitatory synapses, functions that require proper localization of PSD-95 in the postsynaptic density (PSD). Here we report that phosphorylation of ser-295 enhances the synaptic accumulation of PSD-95 and the ability of PSD-95 to recruit surface AMPA receptors and potentiate excitatory postsynaptic currents. We present evi...
متن کاملN-Terminal Palmitoylation of PSD-95 Regulates Association with Cell Membranes and Interaction with K+ Channel Kv1.4
Ion channels and associated signal transduction cascades are clustered at excitatory synapses by PSD-95 and related PDZ-containing proteins. Mechanisms that target PSD-95 to synaptic membranes, however, are unknown. Here, PSD-95 is shown to partition as an integral membrane protein in brain homogenates. Metabolic labeling of brain slices or cultured cells demonstrates that PSD-95 is modified by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 108 شماره
صفحات -
تاریخ انتشار 2002